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It is shown that from the assumption that the physical vacuum realizes a state 
near the maximum of  the effective potential it is possible to obtain many of  the 
observed properties of  the distribution of  galaxies in the universe. 

During the recent years several papers have been published (Arnold, 
1989; Ellis et al., 1990; Anderson, 1990; Stadkowski, 1991; Mafika and 
Stadkowski, 1990) discussing vacuum stability. The authors of these papers 
suggest that we may live in a metastable vacuum. It is even suggested that 
a state in the maximum of the effective potential may be very stable 
(Arnold, 1989). If  the lifetime of such a vacuum exceeds the age of  the 
universe, this vacuum may be acceptable as a physical one. In this paper 
the simplest consequences of the assumption that we live in this type of 
vacuum are discussed. Properties of this vacuum may be discussed in a 
model-independent way. Specifically, no connection with elementary parti- 
cle theory is assumed. Near the maximum, the effective potential may be 
expanded in the power series 

1 ~2U] 
U(~b) = U(~bo) + ~ ~-~[~o A~2 4 - - "  (1) 

In (1), �9 means the effective physical field, which for simplicity is chosen as 
the scalar field. Using the notation A~ = ~ -- ~0 = q~, d:U/dr = m2, and 
assuming for convenience U(~) = 0 (we neglect the cosmological term), we 
find 

1 2 2 
= m ( 2 )  
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Now the effective Lagrangian reads 

1 
L = 5 0 u ( ~  - U ( d p )  (3) 

which leads to the static Euler-Lagrange equation 

At~ = m2~b (4) 

Assuming spherical symmetry, we have 

~ b ' +  --m2~b -----0 (5) 
r 

In (5) the prime denotes differentiation with respect to the space radius r. 
Equation (5) has an exact solution of the form 

e - mr  

~b = A - -  (6) 
r 

for m 2 > 0, o r  

sin(mr) 
~b = A - -  (7) 

r 

for m2< 0. The most interesting property of this solution is the surface 
dependence of the energy (R. Mafika, personal communication, 1991). 
Using the identity 

we find 

v ( o v ~ )  = ( r e )  ~ + OaO 

,<r, :.J'.,,," +,..,} 
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(8) 

From the Euler-Lagrange equation (4) it is clear that the volume integral 
vanishes. This fact is sometimes interpreted as indicating that solutions (6), 
(7) have zero energy. This is true in the stable vacuum (m 2 > 0 ) - - t h e  
exponential factor in (6) leads to the vanishing of the surface integral. In 
the unstable vacuum this is false. The energy density for (7) has the form 

1 [m 2 o ~ 2 A2 1 - cos(2mr) m sin(2mr).] (10) 
= -~- cos(2mr) + 2r 4 r3 j 

(9) 
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Integrating (10), we obtain 

E(r) = f v d V  E = n A 2 I m  sin(2mr) + C~ - I (11) 

which really is not zero. For large r, the second term tends to zero, but the 
first cannot be neglected. 

Solution (7) has a clear interpretation: classical excitations of the 
vacuum state of (3) (with m 2 <  0) have the form (7). 

A classical (or semiclassical) approach must be especially applicable 
for the large period ro. If r0 has an astronomical value (extremely small m), 
we can ask about the influence of the field configuration (7) on astronom- 
ical bodies. The shape of the energy distribution (11) is simple to find. For 
example, E is equal to zero for r fulfilling one of the two equations 
sin(mr) = 0 or tg(mr)= mr, but in fact what is interesting is only the 
property that the energy density is concentrated in a restricted area. 

This energy concentration may be the starting point for the creation of 
the galaxies. 

At this moment, two remarks are needed. First, the fact that the 
solutions (6), (7) distinguish the point r = 0 need not break the large-scale 
transition symmetry of the universe. In the universe there may exist many 
excitations of type (7) and galactogenesis may occur at the intersection 
points of the maximal-energy-concentration spheres. 

A second remark is that solution (7) is obtained by neglecting the 
other terms in (1). This leads to very big regions of large energy density. 
When the potential is strongly nonlinear these regions may be small. 

But the most important question is whether astronomical facts support 
this approach to the structure of the universe. 

The first of these facts is the redshift periodicity (Broadhurst et al., 
1990). Some years ago it was found that galaxies distinguish some of the 
redshifts, which was interpreted as the periodical space distribution of the 
galaxies. The period of this distribution is about 128 Mpc. Using this value, 
we can calculate t ~ z u / t ~  2= m 2. The value of m is m = n/(128 Mpc) = 
2.5 x 10 -2s [l/m], or energetically, 10 -30 eV. In the linear approximation 
(1) the constant .4 is arbitrary (in the nonlinear case this is not true) and 
to obtain its value we need another astronomical fact. Fortunately we have 
this fact. A large part of the universe, including our galaxy, is moving with 
respect to the cosmic microwave background. This motion has a clear 
origin if we assume excitation (7): it is motion in the gravitational field 
generated by the energy distribution. In the Newtonian approximation, the 
spherical distribution of the energy (11) leads to the force 

F - GnA 2 {m sin(2mr) + [ cos(2mr) - 1 ]/r } (12) 
C2g 2 
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acting on the material points in the vacuum excitation (7). The change of  
sign in (12) is due to neglect of  the cosmological term in (1). The negative 
value in (10) and (11) has the same origin. Assuming a positive value of  the 
U(Oo), we must add a term J" U(Oo) d V  to the entire integral. By comparing 
(12) with the centrifugal force, we can obtain the value of  A: 

G E  v 2 

c2r  2 -  r ~"  (13) 

A 2 -- v2c2nro 
l r G m k  (14) 

In (13) we chose the value v = 600 km/sec (Dressier, 1991) and denoted 
k = s i n ( n m r o ) ,  r = ton ,  ro = 128 Mpc. 

The large value of  A may seem strange. In fact, it is only a conse- 
quence of  bad units, and the physical value of  A is rather moderate. 
Substituting A into (10), we find 

[J -_lSx 10 c-~  (15) 

where k '  = cos(nro). 
It is interesting that the value of the energy density we obtain is very 

close to the critical density (for k', k and n equal to 1, this density leads to 
the 30 km/sec -Mpc  value of  Hubble constant), so the field ~b may be 
considered as a good candidate for dark matter, fulfilling all demands of  
the standard inflationary model. When we notice that solution (7) describes 
another well-known property of  the large-scale structure, that galaxies lie 
on rather thin surfaces surrounding relatively empty regions (voids), we see 
that it may be useful to pay some attention to the assumption that our 
vacuum is a maximum of the effective potential. 

Of  course, we need not worry about  the stability of  this maximum. The 
probability F of  the tunneling on the unit volume V (Linde, 1983) is 
proportional to e -s, where S is the Euclidean action described by Lagran- 
gian (3) with solution (7). For the values A and m obtained here F is 
strictly zero. We can obtain the same conclusion using the method devel- 
oped in Arnold (1989). The critical radius and energy of  the bubble may be 
approximated by r 0 and 1016Mo| respectively. The effective potential is 
almost constant. 
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